a2 United States Patent

Chen et al.

US009483577B2

US 9,483,577 B2
*Nov. 1, 2016

(10) Patent No.:
45) Date of Patent:

(54)

(735)

(73)

")

@
(22)

(65)

(63)

(1)

(52)

(58)

SMALL FORM FACTOR WEB BROWSING

Inventors: Yu Chen, Beijing (CN); Hong-Jiang
Zhang, Beijing (CN); Wei-Ying Ma,
Beijing (CN); Ming-Yu Wang, Beijing

(CN)

Assignee: Microsoft Technology Licensing, LLC,
Redmond, WA (US)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 1221 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/230,513

Filed: Sep. 12, 2011

Prior Publication Data

US 2012/0005565 Al Jan. 5, 2012

Related U.S. Application Data

Continuation of application No. 11/465,736, filed on
Aug. 18, 2006, now Pat. No. 8,020,090, which is a
continuation of application No. 10/306,729, filed on
Nov. 27, 2002, now Pat. No. 7,203,901.

Int. CL.

GOGF 17/00 (2006.01)

GOG6F 17/30 (2006.01)

U.S. CL

CPC e GO6F 17/30905 (2013.01)
Field of Classification Search

CPC e GO6F 17/30905
USPC 715/205, 238, 234, 243, 246, 252

See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,537,526 A 7/1996 Anderson
5,704,029 A 12/1997 Wright
5,893,127 A 4/1999 Tyan et al.
5,918,237 A 6/1999 Montalbano
6,023,714 A 2/2000 Hill
6,167,409 A 12/2000 DeRose et al.
6,230,174 Bl 5/2001 Berger et al.
6,300,947 B1 10/2001 Kanevsk
(Continued)

OTHER PUBLICATIONS

Office Action for U.S. Appl. No. 12/262,105, mailed on Dec. 23,
2011, Jin-Lin Chen, “Function-based Object Model for Web Page
Display in a Mobile Device”, 18 pgs.

(Continued)

Primary Examiner — Stephen Hong

Assistant Examiner — Matthew Ludwig

(74) Attorney, Agent, or Firm — Sandy Swain; Micky
Minhas; Lee and Hayes, PLL.C

57 ABSTRACT

A large web page is analyzed and partitioned into smaller
sub-pages so that a user can navigate the web page on a
small form factor device. The user can browse the sub-pages
to find and read information in the content of the large web
page. The partitioning can be performed at a web server, an
edge server, at the small form factor device, or can be
distributed across one or more such devices. The analysis
leverages design habits of a web page author to extract a
representation structure of an authored web page. The
extracted representation structure includes high level struc-
ture using several markup language tag selection rules and
low level structure using visual boundary detection in which
visual units of the low level structure are provided by
clustering markup language tags. User viewing habits can be
learned to display favorite parts of a web page.

20 Claims, 8 Drawing Sheets

Page Splitting

803: Sub-Page —\

805: Sub—Page—/

800: index Page
/_ 807:
/_ Sub-Page

809.
Sub-Page

US 9,483,577 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

6,345,279 Bl 2/2002 Li et al.
6,493,703 Bl 12/2002 Knight et al.
6,542,925 B2 4/2003 Brown et al.
6,546,406 Bl 4/2003 DeRose et al.
6,556,217 Bl 4/2003 Makipaa
6,564,263 Bl 5/2003 Bergman
6,573,907 Bl 6/2003 Madrane
6,680,976 Bl 1/2004 Chen et al.
6,785,676 B2 8/2004 Oblinger
6,876,625 Bl 4/2005 McAllister et al.
6,876,628 B2 4/2005 Howard et al.
6,898,800 B2 5/2005 Son et al.
6,910,049 B2 6/2005 Fenton et al.
7,051,276 Bl 5/2006 Mogilevsky et al.
7,093,001 B2 8/2006 Yang et al.
7,093,011 B2 8/2006 Hirata et al.
7,178,097 Bl 2/2007 Talluri
7,225,397 B2 5/2007 Fukuda et al.
7,246,306 B2 7/2007 Chen et al.
7,278,098 Bl 10/2007 Boye et al.
7,599,983 B2 10/2009 Harper et al.

2001/0054049 Al
2002/0016801 Al
2002/0099829 Al
2002/0143821 Al
2002/0156807 Al
2002/0169854 Al
2003/0005159 Al
2003/0014442 Al 1/2003 Shiigi et al.

2003/0037076 Al 2/2003 Bravery et al.

2003/0095135 Al* 5/2003 Kaasila et al. 345/613
2003/0101203 Al 5/2003 Chen et al.

2003/0115365 Al 6/2003 Lindsey

2003/0217117 A1 11/2003 Dan et al.

2004/0085341 Al 5/2004 Hua

2004/0086046 Al 5/2004 Ma et al.

2004/0088276 Al 5/2004 FElder et al.

2004/0148571 Al 7/2004 Lue

2004/0165784 Al 8/2004 Xie et al.

2004/0172484 Al 9/2004 Hafsteinsson et al.
2004/0187080 Al 9/2004 Brooke

2005/0108637 Al 5/2005 Sahota et al.

2005/0114434 Al 5/2005 Yang et al.

2006/0064636 Al 3/2006 Hua et al.

2006/0129671 Al 6/2006 Yang et al.

2006/0282445 Al 12/2006 Chen et al.

2007/0089053 Al 4/2007 Uhlig et al.

2007/0156677 Al 7/2007 Szabo

12/2001 Maeda et al.
2/2002 Reiley et al.
7/2002 Richards

10/2002 Jakubowski

10/2002 Dieberger

11/2002 Tarnoff
1/2003 Kumhyr

OTHER PUBLICATIONS

Abdelzaher, et al., “Web Server QoS Management by Adaptive
Content Delivery”, Hewlett Packard, Dec. 1999, pp. 1-11.
“Abstraction” retrieved on Jan. 30, 2007, at <<http://www.
webopedia.com/TERM/a/abstraction.html>>, Jupitermedia Corpo-
ration, 2007, pp. 1-2.

Bickmore et al., “Digestor: device-independent access to the World
Wide Web”, 1997, Computer Networks and ISDB Systems 29, pp.
#1-pp. #8.

Breslauer, et al., “A Lower Bound for Parallel String Matching”,
Annual ACM Symposium on Theory of Computing, 1991, pp.
439-443.

Cai et al, “Extracting Content Structure for Web Pages based on
Visual Representation”, ACM Transactions on Info. Sys., vol. 20,
No. 1, Jan. 2002.

Chen et al., “Detecting Web Page Structure for Adaptive Viewing on
Small Form Factor Devices”, WWW’ 2003, May 20-24, 2003,
Budapest, Hungary, ACM, pp. #1-pp. #9.

Chen, Jinlin et al., “Function-based Object Model Towards Website
Adaptation,” (2001) Proc. of the 10th Int. WWW Conf. pp. 587-596.
Christopoulos, Charilaos et al., “The JPEG2000 Still Image Coding
System: An Overview,” IEEE Transactions on Consumer Electron-
ics, vol. 46, No. 4, pp. 1103-1127, Nov. 2000.

Itti, et al., “A Comparison of Feature Combination Strategies for
Saliency-Based Visual Attention Systems,” Proc. of SPIE Human
Vision and Electronic Imaging IV (HVEI’99), San Jose, CA, vol.
3644, 10 pages, Jan. 1999.

Itti et al., “A Model of Saliency-based Visual Attention for Rapid
Scene Analysis”, IEEE Trans. on Pattern Analysis and Machine
Intelligence, 1998, 5 pages.

Itti, et al., “Computational Modeling of Visual Attention,” Nature
Reviews/Neuroscience, Bol. 2, Mar. 2001, pp. 1-11.

Karkkainen, et al., “Two and Higher Dimensional Pattern Matching
in Optimal Expected Time”, SODA *94: Proceedings of the fifth
annual ACM-SIAM symposium on Discrete algorithms, 1994, pp.
715-723.

Lee, et al., “Perception-Based Image Transcoding for Universal
Multimedia Access,” School of Electrical Engineering Korea Uni-
versity, Seoul, Korea, 2001 IEEE, pp. 475-478.

Lin, et al., “Video Scene Extraction by Force Competition,” IEEE
Intl. Conference on Multimedia and Expo (ICME 001), Waseda
University, Tokyo, Japan, Aug. 22-25, 2001, 7 pages.

Ma et al., A Framework for Adaptive Content Delivery in Hetero-
geneous Network Enviornments, Jan. 2000, SPIE vol. 3969, Pro-
ceedings of MMCNOO, San Jose, USA.

Manola, “Towards a Web Object Model”, Object Services and
Consulting, Inc., at<<http://www.objs.com/OSA/wom.htm>>, Feb.
10, 1998, 60 pgs.

Mohapatra, et al., “A Framework for Managing QoS and Improving
Performance of Dynamic Web Content”, GlobeComm (Global
Telecommunication Conference), IEEE, Nov. 2001, pp. 1-5.
Navarro, “A Guided Tour to Approximate String Matching”, ACM
Computing Surveys, vol. 33, No. 1, Mar. 2001, pp. 31-88.
O’Toole, et al., “Evaluation of Automatic Shot Boundary Detection
on a Large Video Test Suite,” School of Computer Applications and
School of Electronic Engineering, Dublin City University,
Glasnevin, Dublin, Ireland, Challenge of Image Retrieval,
Newecastle, 1999, pp. 1-12.

Non-Final Office Action for U.S. Appl. No. 12/264,566, mailed on
May 26, 2011, Jin-Lin Chen, “Function-based Object Model for Use
in WebSite Adaptation”.

Non-Final Office Action for U.S. Appl. No. 12/262,105, mailed on
Jun. 29, 2011, Jin-Lin CHen, “Function-based Object Model for
Web Page Display in a Mobile Device”.

“Refreshable Braille Displays”, Mar. 11, 2000, retrieved from the
Internet Oct. 26, 2005:http://web.archive.org/web/
200000311151437/http://www.deafblind.com/display.html], Pp-
1-2.

“Schema Objects”, Chapter 10, Oracle 8i Concepts, Release 8.15,
1999.

Smith, et al., “Scalable Multimedia Delivery for Pervasive Com-
puting”, ACM, Multimedia 99, 1999, pp. 131-140.

Smith, et al., “Video Skimming and Characterization through the
Combination of Image and Language Understanding Techniques,”
Proce. of Computer Vision and Pattern Recognition, 1997 IEEE, pp.
775-781.

“Visually Impaired,” Aug. 22, 2002, retrieved from the Internet Oct.
26, 2005:[http://web.archive.org/web/20020822193408/http://
linusdocs.org/ HOWTOs/Access-HOWTO-3 html], pp. 1-6.

Zhang, Adaptive Content Delivery: A New Application Area for
Media Computing Research, Jan. 2000, Available at http://research.
microsoft.com/china/papers/ Adaptive_ Content_ Delivery.pdf.

Ma et al., “A Model of Motion Attention for Video Skimming,”
Microsoft Research Asia, International Conference on Image pro-
cessing, Proceedings 2002, 4 pages.

Ma et al., “A New Perceived Motion Based Shot Content Repre-
sentation,” Microsoft Research China, International Conference on
Image Processing , Proceedings 2001, 4 pages.

Office action for U.S. Appl. No. 12/262,105, mailed on Aug. 31,
2012, Chen et al., “Function-based Object Model for Web Page
Display in a Mobile Device,” 17 pages.

Edge Side Includes, Copyright 2007 Akama Technologies, retrieved
at <<http://www.akamai.com/html/support/esi. html>> last accessed
Mar. 21, 2007, 2 pages.

US 9,483,577 B2
Page 3

(56) References Cited
OTHER PUBLICATIONS

Buyukkokten, et al, “Seeing the Whole in Parts: Text Summariza-
tion for Web Browsing on Handheld Devices,” WWW10, May
2001, Hong Kong, ACM, retrieved at <<http//wwwconf.ecs.soton.
ac.uk/archive/00000067/01 lindex html>> last accessed Mar. 21,
2007, 21 pages.

Notice of allowance from the U.S. patent and Trademark Office for
U.S. Appl. No. 10/949,147, mailed on Sep. 23, 2004, 5 pages.

Office Action from the U.S. patent and Trademark Office for U.S.
Appl. No. 10/949,147, mailed on Dec. 22, 2006, 11 pages.

Office Action from the U.S. patent and Trademark Office for U.S.
Appl. No. 10/949,147, mailed on Dec. 4, 2007, 12 pages.

Yuan, et al. “Evaluation of Edge Caching/Offloading for Dynamic
Content Delivery,” WWW2003, May 2003, Budapest, Hungary,
ACM. 11 pages.

Yuan et al, “Proxy+: Simple proxy Augmentation for Dynamic
Content Processing,” IWCW 2003, New York, Sep. 2003, 12 pages.

* cited by examiner

US 9,483,577 B2

Sheet 1 of 8

Nov. 1, 2016

U.S. Patent

L DI

(b) uano _.
S p0)

gjed

04 -
smo B

ObL -~

(1) lan1es goM

MIOMIEN SSOISHIAN
lo/pue paiipn

(d) Jent05 gopp zoL

EEE
1 obed gop
80k (1) weud

S 901

204

804

US 9,483,577 B2

Sheet 2 of 8

Nov. 1, 2016

U.S. Patent

r
ﬂ sabed-ang x xepuj (2207
o :sabed gapn f
A \— BI01S/IoYINY-8Y [£&é
ﬁ abeiojs
abed gap palelouuy /l 0zz
ﬁ uoneuswbeg abey /.
> g 8¢

1r

_ Bunaisn|D v/
A m 91z
\4
uonosia(Q
Aepunog jensi "
punog {ensiA /’/ b1z
A uonoajes Be | / cle
ON Q oLz
A]A.M \vmwmwocc,q mmmn_ ,Hw
SOA Y /
milln we
ﬁ eleQ b
b]
o4 1senbey aAaosy | 907
D 0Ge a3ain0dd

.

-
»

-
R " abed
abed-gng e Xopuj
92IMBS P
7 _ abed-qng poisenbay
. Aeidsiy/eniaoey
0€e -/ _\ R | ’
ez
¢ "
abeq xapuj paleidsig
- 10 abed-gng isenbay
abeq xapuy 8cc - Aﬁ
90INIDS _/ r \
abed xapuyj v
Ae|dsiq/eniasey
¥ee
/ r 922
/ ejeq i1senbay
v0Z Tinebed gem | v

104 1senbay jeniuy ml

< 20T
T

00¢ HOLS3ND3Y

Tun/ebed gem Jeyiouy

/

US 9,483,577 B2

Sheet 3 of 8

Nov. 1, 2016

U.S. Patent

\ JopeeH —

/

— Jeg apis Wby

ORnO

uonosjes 9alj bej
abenbueT dnyiep

-© 94

T Jeg opIS Yo

P/ YIBeH = x

<

SR T S e m e ww mv mv mm e e em em e e M A A e AR e e W e M A e A an e e

(P+%,Q)% = (94

osoym (PPIMAYSTIAH)A + PIOYSOry) ase

uonoa8la(] J8)00-/lepesaH

€

q=N

14"

sjoXid
N

US 9,483,577 B2

Sheet 4 of 8

Nov. 1, 2016

U.S. Patent

buusisn|D :9 ‘9|4

AT » | <dE<v> A<V > AH><V> OBIOIN
019 — AN 929 4
T g NA . _
NI UG 95N T 809 mﬁh@uwﬁm 1e1ed

HEGH Y G(EH 199 E vZ9 +
R
HEHRAED <NA> | i
909

Sopou JIseq AJISSBL)

| T " a ot

SOpou 21Seq 399[10))

)| 919

A< <V<I<V><qd><V>

029

uoljoala(\CNUCDOm |eNSIA .G 9|4

op0g — apos . By0g
205 .

‘uﬁ USEBBIIBAY
; dppEn

HGH R

(ki
Ch FNOD

809 90§

SINSOUBIR WG

US 9,483,577 B2

Sheet 5 of 8

Nov. 1, 2016

U.S. Patent

19902 £ Ol 9g02
pagoL —. €490z

Qe0L

sishijeuy
[BNSIA ZLL

e 19004

sIsAjeuy
aumpnag be |

S e

e TROPEI

Jeg opiS

Jeg opis
<]
S s e ﬁcm_m T
vonosies bey azos—Y TP sy A

US 9,483,577 B2

Sheet 6 of 8

Nov. 1, 2016

U.S. Patent

48 Ol

abegd-qng
608

sbed-qns 608

eg Ol

Ud | +== | Zd

%wmww:m obed-ang :£08
abed
abed xepuf 1008 Xopu|

bumids ebed

US 9,483,577 B2

Sheet 7 of 8

Nov. 1, 2016

U.S. Patent

Buluol}Iso

d OV -6

Old

—

yno

abey xapuj

US 9,483,577 B2

Sheet 8 of 8

Nov. 1, 2016

suonesyddy

sj0Wey

€68

pieoghay

oLg "

Amvmo.io,w
. AY
LIS PO

L]

818 918 L8 -
“ejeg | seppopy | Swelbold | wesAg
welboud Byo | uoyeoyddy | Bunessdo

U.S. Patent

(mﬂma weiboid
8Y8 .
\ , (118 soinpopy
7 . NV 1 suomien (s)a0emal weiboid 1ey10 |
158 ! Jnauy <
— ‘ (525 weiborg]!
T T e 4 7 928 uoneoyddy ||
- _ m o elpouINy |
B sng y | | 575 Stueibold
= 5 . \..,.,. W \
aoeuaU|
|etoydusg J L - L
_nding Q - walshs
A saydepy —
*174%] 0BDIA (shun ,.S mcsm‘_mgo\,\
s VAR Buisses0id org (v
- — | P8 — / L (18 \
. z08 - sold ,
“““ mm (Wow)
958 - 505 08 fiowspy weishks

US 9,483,577 B2

1
SMALL FORM FACTOR WEB BROWSING

RELATED APPLICATIONS

This application is a continuation of and claims priority
to, commonly assigned co-pending U.S. patent application
Ser. No. 11/465,736, filed on Aug. 18, 2006, titled “Small
Form Factor Web Browsing,” which is a continuation of, and
claims priority to, commonly assigned U.S. patent applica-
tion Ser. No. 10/306,729, filed on Nov. 27, 2002, titled
“Small Form Factor Web Browsing,” the entire disclosures
of'both of which are incorporated by reference herein in their
entireties. U.S. patent application Ser. No. 10/306,729 is
related to U.S. patent application Ser. No. 10/177,803, filed
on Jun. 21, 2002, titled “Web Information Presentation
Structure For Web Page Authoring,” which is incorporated
herein in its entirety by reference (hereinafter, the First
Citation) and is also related to U.S. patent application Ser.
No. 10/179,161, filed on Jun. 24, 2002, titled “Function-
based Object Model for Web Page Display in a Mobile
Device,” which is incorporated herein in its entirety by
reference (hereinafter, the Second Citation). U.S. patent
application Ser. No. 10/306,729 is also related to U.S. patent
application Ser. No. 09/995,499, filed on Nov. 26, 2001,
titled “Methods and Systems for Adaptive Delivery of
Multimedia Contents,” which is incorporated herein in its
entirety by reference, and is hereinafter referred to as the
“Related Patent” (hereinafter, the Third Citation) and is also
related to U.S. patent application Ser. No. 09/893,335, filed
on Jun. 26, 2001, titled “Function-based Object Model for
Use in WebSite Adaptation,” which is incorporated herein in
its entirety by reference, and is hereinafter referred to as the
“Related Patent” (hereinafter, the Fourth Citation).

TECHNICAL FIELD

This invention relates to adapting and rendering a web
page for a small form factor device.

BACKGROUND

The Internet can be browsed by small Internet devices
such as handheld computers, personal digital assistants
(PDAs) and smart phones. These small form factor devices
have been used to leverage the capabilities of the Internet
and provide users ubiquitous access to information. Despite
the proliferation of these devices, their usage for accessing
today’s Internet is still largely constrained by their small
form factors, particularly their small screen size and their
limited input capabilities. Most of today’s web content has
been designed with desktop computers in mind. Web content
is often contained in large web pages which do not fit into
the small screens of these small form factor devices. The
web browsing in such devices is like seeing a mountain in
a distance from a telescope, where the user is required to
manually scroll the window to find and position the view
correctly for reading information. This tedious and time-
consuming browsing procedure has largely limited the use-
fulness of small form factor devices. Thus, browsing a
typical web page with these devices can be an unpleasant
experience.

To improve the browsing experience with a small form
factor device, a web page can be adapted by techniques that
modify the web content to meet both the client and the
network capabilities. For instance, web objects on a web
page can be distilled to decrease the network and client
consumption, typically by discarding format information

10

15

20

25

30

35

40

45

50

55

60

65

2

which tends to detract from the designed aesthetics of the
web page. A large web page can also be re-authored into its
defined sections and section headers, but there are few such
specifications in typical web pages.

It is desirable to adapt a large web page for a small form
factor device such that the adaptation is fully automatic, the
whole web page is taken into consideration, and the resultant
adapted page will be useable for most purposes. Addition-
ally, it is desirable that the adaptation will leverage the web
page authors’ designing habits, preserve the visual impres-
sion of the original web page, and provide an effective way
to express and realize presentation design.

Accordingly, this invention arose out of concerns associ-
ated with providing improved web page adaptation and
re-authoring for small form factor devices.

SUMMARY

In accordance with the described embodiments, web
content is translated from web content originally created for
a large form factor device (e.g. a desktop computer) so that
it can be viewed on a small form factor device (e.g. a palm
top computer). The translation analyzes the web content of
a large web page, partitions the content of the large web page
into different sub-pages, learns user viewing habits or user-
inputted preferences, and displays the appropriate sub-pages
based on such learning or user-inputted preferences. By
partitioning a large web page into sub-pages, a user can
navigate the web page on a small screen of a small form
factor device. The sub-pages are ranked by importance
according to an analysis of the content and according to the
user’s preferences and needs. The user can jump between
sub-pages to find and read information in the content of the
large web page. The partitioning can be performed at a web
server, an edge server, at the small form factor client, or can
be distributed across one or more such devices. Implemen-
tations include web page analysis that leverages design
habits of web page authors to extract a representation
structure of a web page. The web page analysis include
extracting high level structure using several markup lan-
guage tag selection rules and then extracting low level
structure by visual boundary detection in which visual units
of the low level structure are provided by clustering the leaf
markup language tags.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the various methods,
apparatuses, computer programs, and systems of the present
invention may be had by reference to the following detailed
description when taken in conjunction with the accompa-
nying drawings wherein:

FIG. 1 is a block diagram, in accordance with an imple-
mentation of the present invention, of a networked client/
server system.

FIG. 2 is a flow diagram of a web page adaptation and
presentment process in accordance with one or more imple-
mentations, and in which the process has various steps,
including a request for a web page from a requestor, a
provider that performs page analysis on the requested web
page including tag structure analysis, visual analysis, and
clustering, and service of an index page or an auto-posi-
tioned sub-page by the provider to the requestor.

FIG. 3 is a graph useful in an implementation for provid-
ing a dynamic threshold for the determination of a header
and/or a footer for a web page.

US 9,483,577 B2

3

FIG. 4 shows the result of an implementation in which a
markup language tag tree selection process is performed
upon a web page so as to partition the web page into regions,
including one header, one footer, one left side, one right side,
and four body regions.

FIG. 5 shows the result of an implementation in which a
visual boundary detection process is performed upon a
region of a fragment of a web page that includes a plurality
of blocks each of which is projected on to an axis in order
to detect visual boundaries in the region of the web page.

FIG. 6 shows a sequence of illustrations with respect to
the regions of the fragment of the web page seen in FIG. 5
that is subjected to a clustering process based upon its
markup language tree tag sequence, and in which groups of
nodes are formed in order to determine visual units for
detecting boundaries for the region of the fragment of the
web page.

FIG. 7 is a diagram illustrating an overview of an analysis
and partitioning of a web page, including processes for
markup language tag tree selection, clustering, and visual
analysis, where the overview is useful in understanding
aspects of one or more described implementations.

FIGS. 8a and 85 are, respectively, a block diagram of an
index page with corresponding sub-pages and an example of
a web page expressed as an index page that is split into
smaller sub-pages for separate viewing.

FIG. 9 is a diagram of an exemplary web page to which
an auto-positioning process has been applied for prioritized
viewing of sub-pages thereof on a small form factor device
in accordance with various implementations.

FIG. 10 is a block diagram of an exemplary computer
environment in which various implementations can be prac-
ticed.

DETAILED DESCRIPTION

Overview of Page Analysis and Presentation for Small
Form Factor Devices

This patent presents a web page adaptation method of
page partitioning for browsing on a small form factor device.
The web page adaptation method includes processes for
analyzing a web page to obtain its structure and then
splitting up the web page. In the analysis process, a hierar-
chy of regions is created to represent the semantic and visual
structure of the web page. According to this hierarchy, and
the screen size of the small form factor device, appropriate
blocks are selected as sub-pages.

After sub-page generation, an image index page is created
to assist a user in navigating the web page. The image index
page is marked with sub-pages, each of which is made up of
one of more of the regions. When browsing, the user will
first view a thumbnail rendering of the image index page.
Then, in a bi-level browsing convention, the user can click
on one of the marked sub-pages on the thumbnail of the
image index page to go to the desired sub-page. Alterna-
tively, the user’s historical browsing habits for the web and
for particular web pages can be analyzed to prioritize the
first sub-page that the user will see when requesting a web
page.

Turning to the drawings, wherein like reference numerals
refer to like elements, implementations of the invention are
illustrated in a general network environment. Although not
required, implementations are described in the general con-
text of computer-executable instructions, such as program
modules, being executed by a computer or like device,
which, for example, may take the form of a personal
computer (PC), a workstation, a portable computer, a server,

10

15

20

25

30

35

40

45

50

55

60

65

4

a plurality of processors, a mainframe computer, a wireless
communications base station, and small form factor devices
such as hand-held communications devices (e.g. a cellular
telephone, a palm top computer, a streamed media player, a
set-top box, etc.).

General Network Structure

FIG. 1 shows a client/server network system and envi-
ronment, in accordance with an implementation, for tran-
sreceiving data over wired or wireless IP channels and
networks. Generally, the system includes one or more (p)
network server computers 102, and one or more (q) network
client computers 104. The computers communicate with
each other over a data communications network, which in
FIG. 1 includes a wired and/or wireless network 106. The
data communications network might also include the Inter-
net or local-area networks and private wide-area networks.
Network server computers 102 and network client comput-
ers 104 communicate with one another via any of a wide
variety of known protocols, such as the Transmission Con-
trol Protocol (TCP) or User Datagram Protocol (UDP). Each
of the p network server computers 102 and the q network
client computers 104 can include a codec for performing
coding and decoding for data that is respectively transmitted
and received.

Network server computers 102 have access to data includ-
ing streaming media content in the form of different media
streams. These media streams can be individual media
streams (e.g., audio, video, graphical, etc.), or alternatively
composite media streams including multiple such individual
streams. Some of the data can be stored as files 108 in a
database or other file storage system, while other data 110
might be supplied to the network server computer 102 on a
“live” basis from other data source components through
dedicated communications channels or through the Internet
itself. The data received from network server computers 102
are rendered at the network client computers 104.

As shown in FIG. 1, the network system in accordance
with an implementation of the invention includes network
server computer(s) 102 from which a plurality of media
streams are available. In some cases, the media streams are
actually stored by network server computer(s) 102. In other
cases, network server computer(s) 102 obtain the media
streams from other network sources or devices. The system
also includes network client computer(s) 104. Generally, the
network client computer(s) 104 are responsive to user input
to request media streams corresponding to selected content.
In response to a request for a media stream corresponding to
the content, network server computer(s) 102 streams the
requested media streams to the network client computer 104.
The network client computer 104 renders the data streams to
produce a presentation.

FIG. 2 shows an implementation for a process in which a
requestor 200 requests a web page at block 202. At block
204, the request for the web page is relayed to a provider
250. Blocks 204, 224, and 230 in FIG. 2 are representative
of transmissions over one of more wired and/or wireless
networks. Requestor 200 can be a computing environment
similar to network client computer 104 in FIG. 1 and
provider 250 can be a computing environment similar to
network server computer 102 in FIG. 1. Provider 250
receives the request for the web page at block 206 and
queries whether the web page is annotated at block 208. If
the web page is annotated, the process moves to a block 222
which is discussed below. Otherwise, the process moved to
block 210 where web page analysis begins. A markup
language tree tag selection process is performed at block 210
to extract high level structure of the web page using several

US 9,483,577 B2

5

markup language tag selection rules. Implementations of the
markup language tree tag selection process are discussed
below in reference to FIGS. 3-4 and 7. After tag selection at
block 210, the process moves to block 212 where further
web page analysis is conducted. In particular, block 212
extracts low level structure of the web page by visual
boundary detection at block 214 in which visual units of the
low level structure are provided by clustering at block 216.
After blocks 214 and 216 are performed sufficient to extract
the low level structure of the web page, the process moves
to block 218 where the web page is segmented into sub-
pages and then to block 220 where the segmented web page
is annotated for an image index page and sub-pages thereof.
The annotation, which is a kind of re-authoring of the
originally requested web page, is stored for future use at
block 222. Provider 250 then serves requestor 200 at a
transmission at block 224 of the image index page of the
requested web page.

Requestor 200 receives the transmission at block 226 at
which point a display of the image index page can be made
by requestor 200, such as upon a small screen. The image
index page can assist the user of requestor 200 in navigating
the requested web page. The image index page is a thumb-
nail view that is marked with one or more sub-pages. At
block 232, the user inputs to requestor 200. The user’s input
is examined at block 234.

The user can input one of the sub-pages that the user
desires to view in a larger display, such as by tapping upon
a touch-sensitive display screen of requestor 200 at the
location of the desired sub-page as a means of input. If the
user inputs a request for a specific sub-page, block 234
moves control to block 204 where the request for the
sub-page is transmitted to provider 250. The user’s request
for the sub-page is received at block 206. The prior anno-
tation of the requested web page is acknowledged at the
query of block 208 such that control moves to block 222 to
retrieve the requested sub-page from storage and to transmit
the same back to requestor 200 at block 230. Requestor 200
receives and displays the requested sub-page at block 232,
which display allows the user to input further requests at
block 234.

If a sub-page is displayed at block 232 and the user inputs
a request to display the thumbnail view of the image index
page, control returns to block 226 to display the thumbnail
view. In this case, the image index page can be stored locally
at requestor 200. Alternatively, requestor 200 can input a
request for the same or a different web page to provider 250,
in which case control moves to block 202 for a repetition of
the foregoing.

Obtaining the High Level Structure of a Web Page

A web page, especially a large one designed for viewing
on a desktop PC, can be logically partitioned into regions,
each representing a unit of relatively independent informa-
tion that can be managed and displayed separately. It is
possible that a logical region is complex and contains
smaller logical blocks, thus forming a logical region hier-
archy. Such a logical region hierarchy represents the seman-
tic structure of a web page. Obtaining the structure requires
understanding or analysis of the web page. To assist the
computational environment in assessing the semantic of web
pages, the structure of the web page can be obtained by
leveraging the authors’ designing habits.

When designing a web page, especially a large web page,
the author usually partitions the web page into several high
level regions to set up a scaffold-like structure of the web
page. To produce the scaffold, the author usually uses
markup language tags for layout purposes at the high level

10

15

20

25

30

35

40

45

50

55

60

65

6

regions of the web page. Therefore, analyzing web page’s
markup language tag tree can provide enough information to
detect the high level structure or regions of the web page.
For example, the author would consider whether the page
should contain the high level regions of a header, a footer,
and side bars. These regions form the periphery of the web
page and any body regions, where are also high level
regions, are surrounded by the periphery regions. The author
may also consider how many topics should appear in the
body regions of the web page. For example, the Hyper Text
Markup Language (HTML) tag tree of a web page can be
used to detect its high level regions.

After setting up the high level regions of the web page, the
author fills each region with desired content. Inside the
region, if there should be further partitioning, the author
usually provides visual separators to tell the reader the
boundaries of the content in the web page. Repeating
patterns in the region suggest that the objects in the web
page that correspond to each pattern probably represent a
basic semantic unit.

In this patent, implementations of a web page analysis
method focus upon the authoring design habits. The method
first analyzes the markup language tag tree structure in order
to derive therefrom the high level structures or regions of the
web page. These high level regions include a header, a
footer, left and right side bars, and one of more body regions.
Within each high level structure, a pattern detection algo-
rithm can be used to find one or more basic semantic units.
The basic semantic units are then projected to find the visual
boundaries of the high level structures. The finding of the
visual boundaries produces one or more low level structures
for each of the high level structures. The high and low level
structure information can then be stored using an annotation
mechanism. The stored information can be retrieved and
used for displaying the web page on small form factor
devices.

From the layout’s perspective, each web page can contain
one or more of five regions: header, footer, left side bar, right
side bar, and one or more body regions. The header and
footer regions are typically shorter than the other regions.
The header region is located at the top of the web page and
the footer region is located at the bottom of the web page.
Side bar regions are tall and thin and located at the left or
right side of the web page. The body regions are typically
neither as short as the header or footer regions nor as thin as
the side bar regions. Rather, the body regions are usually
located at the center part of the web page so as to attract most
of the browsing user’s attention.

Based on the layout information in the markup language
tree tag structure, the heuristics for the five regions can be
found (e.g. header, footer, left side bar, right side bar, and
body regions).

Deriving the Header and Footer Regions

Generally speaking, a header region should appear at the
top of the page. To do so, the upper N pixels of the web page
can be defined as the header region. All of the tree tags
falling inside the header region wholly are considered to be
header blocks.

The shape of a tag tree region is also taken into account.
It is preferable that the shorter tag tree regions have a larger
possibility of being placed into the header region. In other
words, the shorter the region—the larger the value of N. As
illustrated in FIG. 3, a dynamic threshold for the header
region can be determined as N=base_threshold+F(Height/
Width), where F(x)=a/(b*x+c), x=Height/Width, and
base_threshold, a, b and ¢ are constants. It is preferred,
although optional, that the following value set be used:

US 9,483,577 B2

7

base_threshold=160, a=40, b=20, and c=1. The footer region
is derived similar to that header region, except that the
bottom N pixels of the web page are defined as the footer
region.

Deriving the Left and Right Side Bar Regions

A heuristic can be set that any tree tags that fall into the
left fourth part of the web page will be considered to be in
the left side bar region, where the right fourth corresponds
to the right side bar region. Other partitioning besides one
third can also be used for the derivation of the opposing side
bar regions, which need not be the same size.

The foregoing derivation does not take the shape of the
opposing side bar regions into account because they may
contains several small regions which are not thin when
examining them alone.

Deriving the Body Regions

The regions that do not match the rules for the header,
footer and side bar regions are considered to be body
regions. The derivation of the body regions, however, can be
complex. For example, in a web page, a <BODY> tag can
contain a <CENTER> tag as its only child (e.g. the author
uses the <CENTER> tag to align the whole page to the
middle). When using the rules for the derivation of the
header/footer and the side bar regions, it can be concluded
that the region of the <CENTER> tag is not header, footer
or sidebar. Neither the <BODY> tag nor the <CENTER> tag
should be considered to be a body region because a tag that
represents a relatively large region will likely contain sev-
eral high level structure regions. As such, it is desirable to
detect each tag that is a relatively large region and then split
or divide the tag into smaller blocks.

When tags are associated with relatively large regions, the
tag can be split up into smaller blocks, unless the tag
matches one or more of the following rules:

(1) If a tag corresponds to a header or footer region, it does

not need to be split;

(ii) If a tag corresponds to a side bar region, it does not
need to be split;

(iii) If a tag’s width or height is smaller than a base line
threshold (see FIG. 3, supra), it does not need to be
split.

In rule (iii), above, it is preferable to vary the base threshold
(e.g. see FIG. 3) for width and height for different kinds of
web pages. For example, for the multi-subject web pages
typical of a “home page” for a web site used by a large
number of users (e.g. msn.com, yahoo.com, aol.com, etc.),
it is preferable, although optional, to use 240 pixels for the
width and to use 150 pixels for the height.

FIG. 4 shows a web page before and after an implemen-
tation of the markup language tree tag selection process that
uses formatting information in the markup language (e.g.
HTML) of the web page. The result of the tree tag selection
process is the detection of several regions as depicted in
rectangular blocks, including one header region at the top of
the web page, one footer region at the bottom of the web
page, one left side bar region, one right side bar region, and
four (4) body regions as indicated by reference numerals 1
through 4.

Obtaining the Low Level Structure of a Web Page

In FIG. 4, the second and third body regions have low
level structures, but if they are split by their respective tag
tree structures, different results are produced. For the second
region, splitting it by its tag tree structure will produce a
favorable result since its tag tree structure matches its
semantic structure. The third region (e.g. the <TABLE> tag)
is composed of three columns of content from a semantic
point of view. The tag tree structure selection algorithm,

15

30

40

45

55

8

however, can partition the region only by the row or by the
cell. As such, once the high level structure of the web page
has been derived (e.g. the regions), the web page can be
further analyzed to derive there from its low level structure
(e.g. one or more blocks within each region).

At the middle level, a web page author usually provides
visual boundaries to inform a reader of the structure of the
web page. These visual boundaries can be used to detect the
low level structures of the web page. There are two kinds of
visual boundaries—explicit and implicit. Some markup lan-
guage tags, such as the HTML tags <HR> and bordered
<DIV>, provide explicit indication of boundaries. Some-
times, the author just uses blank areas in the web page to
indicate boundary. These boundaries are implicit.

Explicit Boundary Detection

Explicit boundaries can be detected by analyzing the
properties of the tag tree structures of a web page. The <HR>
tag is a tag tree structure that is a boundary itself. Some tags,
such as <TABLE>, <TD> and <DIV>, have border proper-
ties. When their border properties are set, there are bound-
aries at corresponding borders. Besides these two kind of
explicit boundaries, there are still boundaries indicated by
images. An example of explicit boundaries can be seen in the
third body region depicted in FIG. 4, which is also seen at
reference numeral 706 in FIG. 7. In these figures, the
horizontal line 7034 at the top of the image is an <HR> tag.
The two vertical lines 7035, 703¢ at the middle part of the
image are tags in table cells. Stated otherwise, there
are four <TD> tags involved, including two for the content
row and two more for the “more xxx . . . ” row that is seen
in the third body region.

From the clues on explicit boundaries, the third body
region depicted in FIG. 4 can be further partitioned into four
(4) blocks. The partitioning of reference numeral 706 in FIG.
7 into four (4) blocks can be seen with a first block at
reference numeral 708 that contains three icons: ‘Micro-
soft NET’, ‘Microsoft Windows’, and ‘Microsoft Office’.
These three icons are placed in one block because they are
actually in a single image. The rest of reference numeral 706
in FIG. 7 is divided into three (3) columns which contain
detailed information about Microsoft .NET™, Microsoft
Windows®, Microsoft Office®, respectively. FIG. 7 shows
reference numeral 703a at the top of the image which is an
<HR> tag representing a thin line. FIG. 7 also shows
boundary images at reference numerals 7035 and 703c¢
which are <TD> tags, each being represented as a thin line.
In sub-block 7065, the <HR> tag of reference numeral 703a
and the boundary images at reference numerals 7036 and
703¢ are discarded since they are boundaries.

Implicit Boundary Detection

The implicit boundaries are blank areas created intention-
ally by the authors to indicate content group borders. They
cannot be detected directly by analyzing the tag tree struc-
ture properties. Since they are blank, a projection based
method can be used to detect them.

The whole web page or a part of the web page is
composed of a set of content objects, as was disclosed in
each of the First, Second, Third, and Fourth Citations. Each
content object occupies a rectangular. Projecting these rect-
angles to one axis that is perpendicular to another axis will
generate a chart indicating the number of objects at the
direction of each point on the axis (e.g. projecting content
object rectangles to the X or Y axis, as was disclosed in the
First Citation). A point with a zero projection value indicates
a possible implicit boundary which is seen on the web page
as being a blank area or a gap.

US 9,483,577 B2

9

In one implementation, the projecting of the rectangular
shapes serves the goal of identifying blank areas in the high
level structure (e.g. the regions) of the web page. To do so,
one or more functions of the objects in each region are
analyzed on the basis of a layout structure of each function.
This analysis is performed by configuring each function into
a rectangle. Each rectangle is then projected normally onto
each of perpendicular axes (e.g. X and Y axes). One or more
separators in each region can then be determined as a
function of the sum of the projections on each axis, where
each separator projects normal to one of the axes.

In another implementation, the blank areas in each region
can be defined by processing the markup language tag tree
defining each region to identify therein multiple different
objects. Each individual object has one or more properties
relating its functions. Functions of the individual objects can
then be analyzed. This analysis is conducted by grouping
one or more objects associated with the region into a shape
that contains at least one function. Each shape is then
separated from the other shapes by a separator. Each shape
is a rectangle having sides parallel or normal to that of the
other rectangles and to the separators. Blanks are then
inserted between the shapes. Each shape is then projected
normal to two perpendicular axes (e.g. X and Y axes). Each
projection along each axis is then quantified. The separators,
which represent implicitly determined blank space in the
region, can then be identified as being perpendicular to those
points along each section of each axis where the quantity of
the projections is less than a predetermined threshold.

FIG. 5 shows a fragment 504a from a Web page. Frag-
ment 504a can be further divided by a transition 506 to a
column form 5045, which can be better seen by a transition
508 into a sub-block 504¢. Sub-block 504¢ is a <TD> tag
tree structure. The <TD> tag contains four <DIV> tags
indicated by the bounding rectangles in sub-block 504c.
According to the tag tree structure, the <TD> tag can be
further partitioned into four parts, each corresponding to one
<DIV> tag. From the semantic information, however, it can
be seen that the fragment 504a should be divided into two
blocks each contains two sub-blocks—one of which is 504c.

In one implementation, the effective layout information of
the four <DIV> tags in the tag tree structure of sub-block
5045 are collected by a clustering routine that is discussed
below with respect to FIG. 6 and transition 707 seen in FIG.
7. The collected information for the four <DIV> tags is
represented by four (4) rectangular areas that can then be
projected to the Y axis. As seen in FIG. 5 after transition 508,
three gaps are seen after projecting the four (4) rectangular
areas. It is preferable, although optional, to select the largest
gap—which is the middle gap.

Using the explicit and implicit boundary detection pro-
cesses discussed above, probable visual boundaries can be
detected in the web page or fragments thereof. All probable
visual boundaries, however, are not proper boundaries.
Rather, it is preferable to apply boundary selection rules to
select proper boundaries from among the probable visual
boundaries that were determined by the explicit and implicit
boundary detection processes. These preferred rules are:

a. For the implicit boundaries, the widest gap(s) is/are
selected. The widest gap has the longest segment along
the Y axis of contiguous points that have a zero
projection value;

b. Since a region is to be partitioned into several smaller
blocks, only those explicit boundaries that spread from
one side of the region to the other side are eligible. For
example, the two vertical lines in FIG. 7, indicated by

10

15

20

25

30

35

40

45

50

55

60

65

10

two reference numerals 7035 and 703¢, will not be
chosen when considering the whole third body region;

c. If implicit boundaries and explicit boundaries are both

present, explicit boundaries will be chosen first.

Clustering

Because the implicit boundary detection process dis-
cussed above is based on projecting the detected visual units
to the X or Y axis to find the gaps, it can be sensitive with
the input visual units. If the visual units are too big, it will
probably lose some useful gaps. If the visual units are too
small, there will be too many small gaps. In order to
maximize the useful gaps while minimizing the gaps that are
noise (e.g. too small to be easily discerned), a pattern
recognition process can be used to cluster the leaf markup
language tags (e.g. leat HTML tags) into small groups and
produce the visual units. In illustration of the pattern rec-
ognition process, FIG. 6 shows a sub-block 504¢ that was
determined from the visual boundary detection processes
discussed above. Sub-block 504¢ corresponds to the fourth
(4”) DIV tag in block 505b. A transition 602 seen in FIG. 6
illustrates the identification of the tag tree structure of
sub-block 504c.

Sub-block 504¢ in FIG. 6 contains a tag sequence 604
which is “<A>
<A>
<A>

". It can be
determined that the “<A>
" is the most frequent pattern
in the tag sequence 604. According to it, each “<A>
”
can be formed into three small groups of tag sequences seen
at reference numeral 612. Then, the three small groups 612
can be grouped into a virtual node VN 608 since it is a list.
Now the detail structure inside a DIV 606 changes into the
tree structure form shown in the mid-section of FIG. 6. The
virtual node VN 608 is preferred to become a visual unit for
implicit boundary detection (e.g. by projecting the corre-
sponding rectangular area) since a last BR 610 represents an
empty line. For the four blocks depicted after transition 508
in FIG. 5, if the second block corresponding to the second
DIV tag was selected as the visual unit, the gap under it
would not be wide enough to be preferred because the DIV
tag contains an extra BR which will extend the height of the
second block, similar to that seen in the tag tree structure
depicted in FIG. 6.

An implementation of a clustering process 616 is depicted
in the latter portion of FIG. 6 after transition 614. At block
620 of clustering process 616, a collection is made of the
basic nodes (e.g. a collection of all of the atomic nodes in the
HTML Document Object Model (DOM) tree, as was dis-
closed in the Second Citation.). The collected basic nodes
are then arranged in the order of the markup language
document sequence (e.g. the HTML document sequence).
The basic nodes include all the leaf tags. Some special tags
are also basic nodes regardless of whether they are a leaf
node or not. For example in the HTML markup language,
the tag <A> should always be a basic node since it denotes
a hyperlink. Other special tags include <MARQUEE>,
<SELECT>, <MAP>, etc. Because tag and text can become
a tag’s child at the same time in HTML, collecting leaf tags
only will probably leave the text nodes out. So the text nodes
are also basic nodes. If a text node is the only child of a tag,
the tag will be selected as the atomic node.

After the basic nodes have been collected and ordered at
block 620, clustering process 616 moves to block 622 where
the basic nodes are classified into categories based upon text
font, size, color, and tag properties. The basic nodes in the
same category will be represented by a symbol, thus chang-
ing the node sequence into a symbol string.

After block 622 has transformed the collection of basic
nodes into a symbol string, clustering process 616 moves to

US 9,483,577 B2

11

block 624 where all the possible patterns are detected (e.g.
sub-strings of the symbol string). The detected patterns are
counted as to their frequency in the symbol string (e.g. the
number of times that the sub-string appears in the symbol
string). Among the patterns with highest frequency, the
longest pattern is selected. The longest pattern is then
grouped into a new symbol if its length is bigger than 1. If
the length is equal to 1, clustering process 616 moves to
block 626 where an attempt will be made to merge adjacent
symbols. If no merge can occurs, clustering process 616
return to block 624 where the pattern with next highest
frequency will be selected. Clustering process 616 can be
applied on the newly created string until the highest fre-
quency is below a predetermined threshold. Each non-blank
symbol in the last string represents a visual unit for boundary
detection. The blank symbol includes the
 tag, space
characters, a blank <TD> tag (e.g. a <I'D> tag that contains
space characters only), a blank <MAP> tag, a blank
<SCRIPT> tag, etc.

An exemplary overview of the foregoing tag structure
analysis, clustering, and visual analysis for a fragment 706
of'a web page 7024 is seen by a transition sequence depicted
in FIG. 7. Following a markup language tag tree structure
analysis, web page 702a can be represented as a web page
7025 that is divided into regions that include a header, a
footer, left and right side bars, and four body regions 704,
705, 706, and 710. Body region 706 can be divided into the
three (3) columns 706a, 7065, and 706¢. Each column
contains low level structure information respectively corre-
sponding to the icon in a block 708 (e.g. Microsoft NET™,
Microsoft Windows®, Microsoft Office®). As discussed
above, three lines divide the three columns, including one
line for the reference numeral 703a at the top of the image,
and two lines for the two reference numerals 7035 and 703c.

A clustering process 707 (e.g. an example of which is also
seen as process 616 in FIG. 6) is performed to derive
sub-blocks from web page fragment 706. To do so, basic
nodes are collected, organized, and classified. Markup lan-
guage tag patterns are detected and the detected patterns are
merged where desirable and/or in accordance with prede-
termined rules. The result of the clustering process 707 is
four sub-blocks in each of the three columns 706a, 7065, and
706¢. Clustering process 707 derives from column 706a the
sub-blocks 706al, 70642, 706a3, and 706a4. Sub-blocks
70651, 70652, 70653, and 70654 are derived from columns
7065 by clustering process 707. Clustering process 707 also
derives from column 706¢ the sub-blocks 7061, 706¢2,
706¢3, and 706c4. Each sub-block is a rectangular area that
can be projected to perpendicular X and Y axes. Segments
along these axes that are composed of points having a zero
projection value represent blank areas of the web page that
are eligible to be implied visual boundaries. The longest
segments, as was discussed above with respect to FIGS. 5-6,
are preferred as the implicitly determined boundaries in the
web page.

A visual analysis process 712, which can be performed
after clustering process 707, uses explicit and implicit
boundary detection rules to locate boundaries for the blocks
seen at reference numerals 703a, 7035, and 703¢ for frag-
ment 706 of web page 702a. The boundary indicated by
reference numeral 714 can also be derived by explicit and
implicit boundary detection rules.

Storage of Web Page Analysis Results

The processes indicated in FIG. 7 are repeated for all of
web page 702a until a complete analysis thereof has been
made. After the analysis, a result can be stored for future use.
If each logical block corresponds to one tag, which is the

10

15

20

25

30

35

40

45

50

55

60

65

12

case for the output of the tag selection process set forth
above, a special attribute can be added to each tag to indicate
whether it is a logical block. For example, “<P
block="“true”> . . . </P>" means that all the content inside
this tag (including P itself) constitutes a logical block.
However, as indicated in the above discussion of visual
boundary detection (explicit and implicit) and clustering
processes, there are multi-level logical blocks and each
logical block does not correspond to one tag. In this case, a
logical block hierarchy structure is desirable to store the
analysis result. An annotation mechanism can be used to
store the logical block hierarchy structure of a web page into
an external markup language file, such as an XML file where
the corresponding place of a block in the original HTML
document is indicated by XPath and XPointer. Such an
annotation mechanism can be used to store the analysis
result into a separate file.

By storing the structure information of a web page in a
separate external markup language file, two advantages are
gained. First, the separate file represents the logical block
hierarchy structure without modifying the original markup
language document. Second, for a set of web pages with the
same structure template, a single structure file can be used
for each page in the set of web pages.

Summary of Tag Selection, Clustering and Visual Bound-
ary Detection Processes

The structure of a web page can be obtained by the above
described tag tree selection, clustering, and visual boundary
detection processes. In that the semantic structure of a web
page is difficult to derive, typical design habits of authors
can be used to extract the representation structure of a web
page in an analysis process that includes two steps. The first
step extracts high level structure information about the web
page using several markup language tag tree selection rules.
The second step extracts low level structure information
about the web page by visual boundary detection, in which
the visual units are provided by the clustering process.

Re-Authoring Web Pages

After obtaining and storing the web page structure, adap-
tation can be conducted according to the clues provided by
structure. For a large web page in terms of layout, viewing
it on small form factor devices requires extensive scrolling,
which makes the browsing experience more difficult. One
implementation involves adapting a large web page to shrink
it so that it will fit in the small screen of a small form factor
device (e.g. a mobile handheld device) by splitting it into
smaller sub-pages. This implementation is discussed below.

Web Page Splitting Schemes

There are various ways of splitting a web page, which can
be characterized into two basic actions: single-subject split-
ting and multi-subject splitting. Single-subject splitting
splits the whole web page into several sub-pages and con-
nects the sub-pages with next/back hyperlinks. The result of
single-subject splitting is a double link list. While browsing,
the user has to access sub-pages one by one in the sequence
of'the link list. Multi-subject splitting generates a local index
page in addition to the sub-pages. The local index page
contains hyperlinks pointing to each sub-page. So the result
of multi-subject splitting is a star-like structure. While
browsing, the user will receive the local index page first.
Then the user can access each sub-page through the hyper-
links in the index page. Thus, the multi-subject splitting
introduces a bi-level browsing experience. The multi-subject
spitting technique is preferred, although optional, in that it
cannot be readily determined whether a web page is single-
subject or multi-subject.

US 9,483,577 B2

13

An example illustrating multi-subject splitting is seen in
FIG. 8a where a thumbnail image of a local index page has
been generated from a multi-subject web page that has been
split into sub-pages, where the sub-pages are generated as
the images seen in P1 through Pn. Multi-subject splitting
includes sub-page generation and local index page genera-
tion which are discussed below.

Sub-page Generation

A prerequisite of sub-page generation is selecting appro-
priate logical blocks (e.g. regions) from the web page
structure. For small form factor devices, the appropriate
logical block should be small enough to fit into the small
screen of the device. Since web browsing typically involves
vertical scrolling, in that horizontal scrolling is disfavored,
the width of a selected logical block should be smaller than
or equal to the small screen of the device while its height can
be larger. However, there are some logical blocks that have
a small height but also have a large width. Splitting these
logical blocks can produce too many sub-blocks. Alterna-
tively, the logical block can be a header or footer region
which cannot be made smaller as to its width dimension. So,
the short blocks should be selected if their heights are
smaller than the screen height. Thus the criterion becomes
that the block height should be less than or equal to the
screen height or block width should be less than or equal to
the screen width.

After selecting the appropriate logical blocks, their cor-
responding markup language contents should be extracted
from the original web page and put in the newly created
sub-pages. The XPath and XPointer tags can be used to store
the correspondence between the logical block and the cor-
responding markup language content. According to these
clues, the content of the logical block can be extracted.

The extracted content cannot be put into a sub-page
directly because of two problems: the style information and
the hyperlinks.

Style Extraction

A markup language standard can permit a web page
author to specify the content style. For example, the HTML
standard can permit a web page author to use a Cascading
Style Sheet (CSS) and style inheritance to specify the
content style. The CSS allows authors to define the styles of
tag, tag class or tag instance. Style inheritance allows author
to specify a node’s style at one of its ancestor nodes.
Extracting the block content may probably lose some style
information because the style information from the CSS and
the style inheritance is not located with the content.

In order to keep the block similar with the original web
page, the style information can be collected. For the CSS
case, since the CSS is usually specified in the <HEADER>
tag using <STYLE> or <LINK>, the <HEADER> section of
the original web page can be simply copied to each sub-
page.

For the style inheritance case, a trace can be made along
the parent link of the target node and a collection can then
be made of all of the style information of each parent tag.
The style information from ancestor nodes and the node
itself are merged as child nodes, with higher priority over
ancestor nodes.

Hyperlinks

Web page use internal hyperlinks to assist the user in
locating content inside the web page. In these web pages,
authors use . . . to specify a place in the
web page. Then . . . can be used as
the pointer to the specified place. When clicking on the
internal hyperlinks, the browser will scroll to the specified
place.

10

15

20

25

30

35

40

45

50

55

60

65

14

If the web page is split into several sub-pages, the place
specifier and the pointer may appear in different sub-pages.
For example, . . . may appear in t1.htm
while . . . appears in t2.htm. In this
case, the browser will fail to bring the user to tl.htm on
clicking the pointer in t2.htm if the pointer <A> is kept
unchanged. The solution is to change the pointer in t2.htm
to <Ahref=".../tl.htm#id1”>. .. . A module, routine,
or process that splits the web page can be made to search the
internal hyperlinks and change the pointer to an appropriate
form.

The sub-page can include both ‘inter’ and ‘infra’ hyper-
links. Each sub-page can include one or more hyperlinks that
link to another location within the sub-page (e.g. an ‘intra-
sub-page’ hyperlink). Each sub-page can also include one or
more hyperlinks that link to another sub-page (e.g. an
‘inter-sub-page’ hyperlink).

Another problem concerns the resolution of relative
hyperlinks. A web page author can specify absolute hyper-
links or relative hyperlinks in <A> and <AREA>. The
browser resolves the relative hyperlinks to absolute ones
according to a base URL of the web page. The default base
URL is the URL of the web page. An author, however, can
override the base URL using a <BASE> tag. The <BASE>
tag resides in the <HEADER> section, which becomes
another reason for copying the <HEADER> section to each
sub-page.

The image maps (e.g. the <MAP> tag) also imposes some
difficulties on sub-page generation, since an tag can
reference a <MAP> defined at any place in the original web
page. Preserving the image map can be done by searching
the referenced <MAP> across the original page and adding
its content to the sub-page where the resides.

Local Index Page Generation

Because the multi-subject splitting scheme is preferred,
the local index page should be generated after all the
sub-pages have been generated. In the local index page, the
central problem is to generate proper hyperlinks to the
sub-pages.

Generating the ‘href” values can be based on a sub-page
naming strategy. Each sub-page can be named in the form of
origin_xxx.htm, where the ‘origin’ denotes the name of the
original web page and ‘xxx’ denotes a number. For example,
the first sub-page of default.htm is default_1.htm, the second
one is default_2.htm, and so on.

Besides the ‘href” values, content is needed to represent
the hyperlinks (e.g. the content between <A> and <A>). If
the content is in text, a summarization utility can be run
against each sub-page to produce the content text. Image
content hyperlinks are preferred for sub-pages that mainly
contain images.

As seen in FIG. 85, a thumbnail image 800 is generated
for an original web page. To assist the user of a small form
factor device having color display capabilities, it is prefer-
able to mark the sub-pages with different colors. An
<IMAGE> tag can be used to reference the thumbnail image
and a corresponding <MAP> tag can be placed in the local
index page. While browsing the local index page, the user
can select or ‘click’ on a specific colored sub-page of the
thumbnail image to go to the selected corresponding sub-
page. As seen in FIG. 85, sub-pages 803, 805, 807, and 809
have been generated from the original web page and are
delineated on the thumbnail image 800 of the local index
page to be readily selected for bi-level browsing by a user.
For example, the user can use the up/down/left/right button
on a user interface (Ul) of a small form factor device to
move the window display thereof between the sub-pages

US 9,483,577 B2

15

depicted on the thumbnail image 800 of the local index page.
Once selected from the small icon of the entire web page, the
selected display will zoom to a larger display of the selected
sub-page.

A certain amount of processing is required in order to
accomplish the analysis and partitioning of each web page
requested by a small form factor device. If the latter is not
powerful enough, the analysis and partitioning can be per-
formed at the corresponding proxy server or another web
server or an edge server. Alternatively, the analysis and
partitioning can be distributed across one or more such
devices. For example, the analysis and partitioning of each
web page can be performed by an editor, by the client device
or by a third party service provider:

(1) A web page editor (e.g. FRONTPAGE® software from
the Microsoft Corporation of Redmond, Wash., USA)
can add special attributes to mark up language tags to
indicate sub-pages. A browser (INTERNET
EXPLORER® software from the Microsoft Corpora-
tion of Redmond, Wash., USA) on a small form factor
device can recognize these attributes and provide intel-
ligent positioning.

(ii) If the web page editor does not provide the special
attributes, a third party web service can perform page
layout analysis on the fly and add the layout informa-
tion as a service.

(iii) If the client device is powerful enough, it can perform
page layout analysis by itself and provide this capabil-
ity.

Prioritization of the Regions

Some simple text analysis and heuristic rules can be used
to identify which region contains more important informa-
tion to a browsing user. The browser may start by displaying
a sub-page of an index page that has been determined to
have the most importance. The sub-pages can be prioritized
according to their importance when assisting the user to
navigate them. To illustrate this, FIG. 9 shows an example
of content adaptation from a desktop display to a display that
can be rendered by browsing software for a small form
factor device (e.g. Microsoft® Pocket PC software provided
by the Microsoft Corporation of Redmond, Wash., USA). In
the adaptation depicted in FIG. 9, a thumbnail image 800 of
an index page contains a plurality of icons. Each icon
represents a sub-page of the original web page, including
four (4) sub-pages that have been determined to be of
interest, in the particular order indicated, to a user.

Learning a User’s Browsing Pattern to Enhance Device
Performance

A. If the user often follows a particular path or always
wants to see a particular sub-page of a web page (e.g.
a stock quote in the www.MSN.com home page), such
knowledge can be acquired by a passive learning
algorithm. Then, the next time when the user browses
to visit the same home page again, the browser will
have been trained to immediate start with that sub-
page.

B. Keywords from each sub-page can be extracted and
matched with user’s previously specified interests.
When the user browses a web page, the browser can
position directly to the sub-page which the user is most
interested in.

On a small form factor device, the browser software can
passively track a user’s browsing behaviour to learn the
user’s interests. When browsing, the browser software will
prioritize one or more sub-pages of a web page using the
methods described above. Then, the browser software will
direct a display of the derived most important sub-page of

25

30

40

45

16

the web page. An example of the result of active and passive
learned browsing behaviour is seen in FIG. 9. In FIG. 9, the
browser software learns that the user is most interested in the
mid-right side of the index page. So when the user browses
the web page, the browser software goes to that sub-page
first and positions the sub-page properly inside the screen.
The browser software can also learn secondary interests of
the user. When so learned, the browser can, with a push of
a button on the Ul, take the user in a sequence of the most
to least favorite sub-pages of the index page. As seen in FIG.
9, first through fourth sub-pages are displayed upon demand
in a sequence derived by the browsing software from active
and/or passive learning procedures.

For the web pages that use scripts extensively, a multi-
subject splitting technique can be avoided in favor of
providing scrolling assistance through an auto-positioning
solution. In the auto-positioning solution, a plug-in for the
browser software can be provided. When the plug-in is
invoked, it will analyze the web page currently be browsed
and produce proper sub-pages according to the target size of
the display on the small form factor device. Then the
browsing view will be switched to a thumbnail view which
is similar with the local index page in the multi-subject
splitting solution. Clicking on the thumbnail will switch
back to the browsing view and the focus will be on the
corresponding sub-page that was selected by the user’s input
‘click’ function.

Exemplary Computer Environment

The embodiments described above can be implemented in
connection with any suitable computer environment.
Aspects of the various embodiments can, for example, be
implemented, in connection with server computers, client
computers/devices including small form factor devices, or
both server computers and client computers/devices. As but
one example describing certain components of an exemplary
computing system, consider FIG. 10.

FIG. 10 illustrates an example of a suitable computing
environment 800. It is to be appreciated that computing
environment 800 is only one example of a suitable comput-
ing environment and is not intended to suggest any limita-
tion as to the scope of use or functionality of the inventive
embodiments. Neither should the computing environment
800 be interpreted as having any dependency or requirement
relating to any one or combination of components illustrated
in the exemplary computing environment 800.

The inventive techniques can be operational with numer-
ous other general purpose or special purpose computing
system environments or configurations. Examples of well
known computing systems, environments, and/or configu-
rations that may be suitable for use with the inventive
techniques include, but are not limited to, personal comput-
ers, server computers, thin clients, thick clients, hand-held or
laptop devices, multiprocessor systems, microprocessor-
based systems, set top boxes, programmable consumer elec-
tronics, network PCs, minicomputers, mainframe comput-
ers, distributed computing environments that include any of
the above systems or devices, and the like.

In certain implementations, the inventive techniques can
be described in the general context of computer-executable
instructions, such as program modules, being executed by a
computer. Generally, program modules include routines,
programs, objects, components, data structures, etc. that
perform particular tasks or implement particular abstract
data types. Implementations may also be practiced in dis-
tributed computing environments where tasks are performed
by remote processing devices that are linked through a
communications network. In a distributed computing envi-

US 9,483,577 B2

17

ronment, program modules may be located in both local and
remote computer storage media including memory storage
devices.

In accordance with the illustrated example embodiment of
FIG. 10 computing system 800 is shown comprising one or
more processors or processing units 802, a system memory
804, and a bus 806 that couples various system components
including the system memory 804 to the processor 802.

Bus 806 is intended to represent one or more of any of
several types of bus structures, including a memory bus or
memory controller, a peripheral bus, an accelerated graphics
port, and a processor or local bus using any of a variety of
bus architectures. By way of example, and not limitation,
such architectures include Industry Standard Architecture
(ISA) bus, Micro Channel Architecture (MCA) bus,
Enhanced ISA (EISA) bus, Video Electronics Standards
Association (VESA) local bus, and Peripheral Component
Interconnects (PCI) buss also known as Mezzanine bus.

Computer 800 typically includes a variety of computer
readable media. Such media may be any available media that
is locally and/or remotely accessible by computer 800, and
it includes both volatile and non-volatile media, removable
and non-removable media.

In FIG. 10, the system memory 804 includes computer
readable media in the form of volatile, such as random
access memory (RAM) 810, and/or non-volatile memory,
such as read only memory (ROM) 808. A basic input/output
system (BIOS) 812, containing the basic routines that help
to transfer information between elements within computer
800, such as during start-up, is stored in ROM 808. RAM
810 typically contains data and/or program modules that are
immediately accessible to and/or presently be operated on
by processing unit(s) 802.

Computer 800 may further include other removable/non-
removable, volatile/non-volatile computer storage media.
By way of example only, FIG. 10 illustrates a hard disk drive
828 for reading from and writing to a non-removable,
non-volatile magnetic media (not shown and typically called
a “hard drive™), a magnetic disk drive 830 for reading from
and writing to a removable, non-volatile magnetic disk 832
(e.g., a “floppy disk™), and an optical disk drive 834 for
reading from or writing to a removable, non-volatile optical
disk 836 such as a CD-ROM, DVD-ROM or other optical
media. The hard disk drive 828, magnetic disk drive 830,
and optical disk drive 834 are each connected to bus 806 by
one or more interfaces §26.

The drives and their associated computer-readable media
provide nonvolatile storage of computer readable instruc-
tions, data structures, program modules, and other data for
computer 800. Although the exemplary environment
described herein employs a hard disk 828, a removable
magnetic disk 832 and a removable optical disk 836, it
should be appreciated by those skilled in the art that other
types of computer readable media which can store data that
is accessible by a computer, such as magnetic cassettes, flash
memory cards, digital video disks, random access memories
(RAMSs), read only memories (ROM), and the like, may also
be used in the exemplary operating environment.

A number of program modules may be stored on the hard
disk 828, magnetic disk 832, optical disk 836, ROM 808, or
RAM 810, including, by way of example, and not limitation,
an operating system 814, one or more application programs
816 (e.g., multimedia application program 824), other pro-
gram modules 818, and program data 820. Some of the
application programs can be configured to present a user
interface (UI) that is configured to allow a user to interact
with the application program in some manner using some

25

30

35

40

45

50

18

type of input device. This Ul is typically a visual display that
is capable of receiving user input and processing that user
input in some way. Such a Ul may, for example, comprise
one or more buttons or controls that can be clicked on by a
user.

Continuing with FIG. 10, a user may enter commands and
information into computer 800 through input devices such as
keyboard 838 and pointing device 840 (such as a “mouse”).
Other input devices may include a audio/video input
device(s) 853, a microphone, joystick, game pad, satellite
dish, serial port, scanner, or the like (not shown). These and
other input devices are connected to the processing unit(s)
802 through input interface(s) 842 that is coupled to bus 806,
but may be connected by other interface and bus structures,
such as a parallel port, game port, or a universal serial bus
(USB).

A monitor 856 or other type of display device is also
connected to bus 806 via an interface, such as a video
adapter 844. In addition to the monitor, personal computers
typically include other peripheral output devices (not
shown), such as speakers and printers, which may be con-
nected through output peripheral interface 846.

Computer 800 may operate in a networked environment
using logical connections to one or more remote computers,
such as a remote computer 850. Remote computer 850 may
include many or all of the elements and features described
herein relative to computer 800.

As shown in FIG. 10, computing system 800 can be
communicatively coupled to remote devices (e.g., remote
computer 850) through a local area network (LAN) 851 and
a general wide area network (WAN) 852. Such networking
environments are commonplace in offices, enterprise-wide
computer networks, intranets, and the Internet.

When used in a LAN networking environment, the com-
puter 800 is connected to LAN 851 through a suitable
network interface or adapter 848. When used in a WAN
networking environment, the computer 800 typically
includes a modem 854 or other means for establishing
communications over the WAN 852. The modem 854, which
may be internal or external, may be connected to the system
bus 806 via the user input interface 842, or other appropriate
mechanism.

In a networked environment, program modules depicted
relative to the personal computer 800, or portions thereof,
may be stored in a remote memory storage device. By way
of example, and not limitation, FIG. 10 illustrates remote
application programs 816 as residing on a memory device of
remote computer 850. It will be appreciated that the network
connections shown and described are exemplary and other
means of establishing a communications link between the
computers may be used.

Conclusions

Implementations include a web page adaptation method
of page partitioning and bi-level browsing convention to
improve the browsing experiences on small form factor
devices. The web page adaptation method includes the two
stages of analysis of the web page to obtain its structure and
page splitting. In the analysis stage, a hierarchy is created to
represent the web page’s semantic and visual structure.
According to this hierarchy and the screen size of the small
form factor device browsing the web page, appropriate
blocks are selected as sub-pages. After sub-page generation,
an image index page with block marking is created to assist
navigation. A bi-level browsing convention first displays to
a user a thumbnail image of the index page having thereon
a plurality of icons representing sub-pages. Then user can

US 9,483,577 B2

19

click on one of the sub-page icons to browse an enlarged
image of the corresponding sub-page.

Although the invention has been described in language
specific to structural features and/or methodological steps, it
is to be understood that the invention defined in the
appended claims is not necessarily limited to the specific
features or steps described. Rather, the specific features and
steps are disclosed as preferred forms of implementing the
claimed invention.

What is claimed is:

1. A computer to adapt web content for display on a small
form factor device having a display screen with a width, the
computer comprising:

a high level structure analysis module executed on one or

more processors to receive a web page and to analyze

a markup language tag tree of a markup language

document representing the web page to identify:

peripheral regions of the web page including a header,
a footer, a left, and a right regions; and

body regions enclosed by the peripheral regions;
a low level structure analysis module executed on the one
or more processors to analyze the markup language tag
tree defining the peripheral regions and the body
regions to:
identify visual boundaries from analyzing properties of
tags of the markup language tag tree;

detect patterns in leaf markup language tags to find one
or more basic semantic units each having a shape;

project the shape of each basic semantic unit normal to
perpendicular axes; and

identify the visual boundaries of the web page based on
projection values for each axis.

2. The computer according to claim 1, further comprising
a logical block analysis module executed on the one or more
processors to identify logical blocks that are adjacent to the
identified visual boundaries, such that the logical blocks are
a function of a semantic structure of the markup language
document representing the web page, the logical blocks are
within the peripheral regions and the body regions and are
from corresponding tags of the markup language tag tree.

3. The computer according to claim 2, further comprising
a content adaptation module executed on the one or more
processors to:

partition the visual boundaries and the logical blocks
within the peripheral regions and the body regions into
a plurality of sub-pages, each sub-page containing a
hierarchy of the logical blocks and having a width not
greater than the width of the display screen of the small
form factor device, each logical block being the func-
tion of the semantic structure of the markup language
document representing the web page, wherein the hier-
archy of the logical blocks of each sub-page does not
correspond to one tree tag of the markup language;

form a thumbnail image of the web page having partitions
corresponding to the plurality of sub-pages; and

form a hyperlink to a sub-page from a corresponding
partition of the thumbnail image of the web page.

4. The computer according to claim 3, further comprising

a storage module executed on the one or more processors to
store content in a Hyper Text Markup Language (HTML)
document in an Extensible Markup Language (XML) file
such that the content of the HTML document corresponds to:
the logical blocks within the peripheral regions and the
body regions;

the visual boundaries;

the thumbnail image of the web page having partitions
corresponding to the plurality of sub-pages;

10

15

20

25

30

35

40

45

50

55

65

20

the hyperlink to the sub-page based on the corresponding

partition of the thumbnail image of the web page; and

a correspondence between the content in the HTML

document and a respective place of each of the one or
more logical blocks in the hierarchy of each sub-page
indicated by:

an XPath; and

an XPointer.

5. The computer according to claim 4, further comprising
a style module executed on the one or more processors to
extract style information from the HTML document of the
web page for inclusion in the sub-page.

6. The computer according to claim 1, wherein the
markup language document is a Hyper Text Markup Lan-
guage (HTML) document.

7. A server comprising:

a memory;

a processor coupled to the memory configured to com-

municate with a small form factor client device having
a display screen through a network, for performing acts
comprising:
using a markup language tag tree of a web page to
extract regions of the web page including a header,
a footer, a left, and a right side bar regions, and one
or more body regions adjacent to the header, the
footer, the left, and the right side bar regions;
identifying visual boundaries within the header, the
footer, the left, and the right side bar regions by:
analyzing properties of tags of the markup language
tag tree,
grouping one or more objects associated with the
header, the footer, the left, and the right side bar
regions into a shape;
projecting the shape normal to an axis so that the
shape is represented by one or more semantic units
of tags of the markup language tag tree in each
region; and
determining additional visual boundaries from pro-
jection values for the axis; and
identifying a plurality of sub-pages of the web page
using the identified visual boundaries and the header,
the footer, the left, and the right side bar regions,
where each sub-page has a width not greater than a
predetermined width of the display screen.

8. The server according to claim 7, the acts further
comprising:

forming a thumbnail image of the web page having:

a width not greater than the predetermined width of the

display screen of the small form factor client device;
partitions corresponding to the plurality of sub-pages;
forming hyperlinks to each sub-page from a correspond-
ing partition of the thumbnail image of the web page;
and
storing the plurality of sub-pages of the web page, the
thumbnail image, and the hyperlinks using an annota-
tion mechanism.

9. The server according to claim 8, the acts further
comprising:

extracting style information from the markup language

tag tree of the web page to include content into each
sub-page; and

processing the extracted style information for inclusion

into each sub-page.

10. The server according to claim 8, the acts further
comprising:

receiving a request for the web page from the small form

factor client device; and

US 9,483,577 B2

21

transmitting a transmission to the small form factor client
device over the network that includes at least one of:
the thumbnail image of the web page; or
one of the plurality of sub-pages.

11. The server according to claim 10, the acts further
comprising in response to the request for the web page from
the small form factor client device, presenting the thumbnail
image of the web page to be displayed on a screen of the
small form factor client device.

12. The server according to claim 10, the acts further
comprising in response to the transmitting the one of the
plurality of sub-pages, sending a hyperlink that corresponds
to the one of the plurality of sub-pages to the small form
factor client device.

13. The server according to claim 10, the acts further
comprising:

receiving the request for the sub-page of the web page

from the small form factor client device;

retrieving the requested sub-page from the plurality of

sub-pages stored in a database; and

transmitting the requested sub-page to the small form

factor client device over the network.

14. The server according to claim 10, wherein the trans-
mitting the transmission to the small form factor client
device over the network comprises selecting content for the
transmission based upon prior requests received from the
small form factor client device.

15. A method implemented at least in part by a processor,
the method comprising:

partitioning a markup language document representing a

web page into a plurality of sub-pages;

deriving from the markup language document of the web

page a hierarchy of one or more logical blocks for each

sub-page, such that:

each logical block of each sub-page is a function of a
semantic structure of the markup language docu-
ment; and

10

15

20

25

30

35

22

the hierarchy of the one or more logical blocks of each
sub-page does not correspond to one markup lan-
guage tree tag;

generating a thumbnail image of the web page having

partitions corresponding to the plurality of sub-pages;
and

associating a hyperlink to a sub-page from a correspond-

ing partition of the thumbnail image of the web page.

16. The method according to claim 15, further comprising
storing content in a Hyper Text Markup Language (HTML)
document, the content of the HTML document includes:

the plurality of sub-pages;

the hierarchy of the one or more logical blocks for each

sub-page;

the thumbnail image of the web page having partitions

corresponding to the plurality of sub-pages; and

the hyperlink to the sub-page from the corresponding

partition of the thumbnail image of the web page.

17. The method according to claim 16, further comprising
storing correspondence between the content in the HTML
document and a respective place of each of the one or more
logical blocks in the hierarchy of each sub-page.

18. The method according to claim 15, wherein the
thumbnail image of the web page has a width not greater
than a predetermined number of pixels.

19. The method according to claim 15, wherein each
sub-page has a width less than a predetermined number of
pixels.

20. The method according to claim 15, wherein each
sub-page includes:

corresponding style information for corresponding con-

tent;

hyperlinks to locations within the sub-page, such as

intra-sub-page hyperlinks; and

hyperlinks to locations on a different sub-page, such as

inter-sub-page hyperlinks.

#* #* #* #* #*

